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Abstract

Detecting occupied sites of rare species, and estimating the probability that all

occupied sites are known within a given area, are desired outcomes for many

ecological or conservation projects. Examples include managing all occupied

sites of a threatened species or eradicating an emerging invader. Occupied sites

may remain undetected because (1) sites where the species potentially occurs

had not been searched, and (2) the species could have been overlooked in the

searched sites. For rare species, available data are typically scant, making it

difficult to predict sites where the species probably occurs or to estimate detec-

tion probability in the searched sites. Using the critically endangered Rose’s
mountain toadlet (Capensibufo rosei), known from only two localities, we out-

line an iterative process aimed at estimating the probability that any unknown

occupied sites remain and maximizing the chance of finding them. This

includes fitting a species distribution model to guide sampling effort, testing

model accuracy and sampling efficacy using the occurrence of more common

proxy species, and estimating detection probability using sites of known pres-

ence. The final estimate of the probability that all occupied sites were found

incorporates the uncertainties of uneven distribution, relative area searched,

and detection probability. Our results show that very few occupied sites of

C. rosei are likely to remain undetected. We also show that the probability of

an undetected occupied site remaining will always be high for large

unsearched areas of potential occurrence, but can be low for smaller areas

intended for targeted management interventions. Our approach is especially

useful for assessing uncertainty in species occurrences, planning the required
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search effort needed to reduce probability of unknown occurrence to desired

levels, and identifying priority areas for further searches or management

interventions.
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INTRODUCTION

We often need to know how many occupied sites of a
rare species exist in a certain area, for example to inform
conservation efforts if the species is of conservation con-
cern or to direct eradication efforts if the species is an
emerging invader. However, the number of occupied sites
in a given area is generally uncertain because (1) occupied
sites could exist at sites that have not been surveyed given
that most areas of interest are too large to be searched
comprehensively, and (2) occupied sites may have been
overlooked at sites that have been surveyed given that
detection is almost never perfect.

The key unknown quantity of interest is the probabil-
ity that no unknown occupied sites persist in a defined
area: PNA¼0. In other words, if the area covered by known
occupied sites is excluded, we want to know if the num-
ber of occupied sites (N), in the remaining area (A), or
NA, is 0. This is the same as the probability that all occu-
pied sites have been found in the larger area of interest.
We would like to quantify PNA¼0 and increase it as much
as possible to be able to target management interven-
tions. If we knew the probability of a site i being occu-
pied, Ψi, for all K sites where the species has not been
recorded, then PNA¼0 ¼

QK
i¼1 1�Ψið Þ. Additionally, PN¼0

could be increased most effectively by establishing pres-
ence or absence at those sites at which Ψi is highest.
Absence at a particular site cannot be established with
certainty unless the probability of detecting the species at
an occupied site, pi, is 1. However, each survey resulting
in a nondetection at a site would lower Ψi for that site
(Wintle et al., 2012).

Ideally, we would like to be able to use occupancy
models (MacKenzie et al., 2002, 2017) to estimate Ψi and
pi directly. Unfortunately, the site-specific occupancy
probabilities Ψi are difficult to obtain for very rare spe-
cies, because there are few data to inform models for the
occupancy and detection processes. Occupancy models
require the data to be collected in such a way that the
detection process can be estimated (Guillera-Arroita
et al., 2015), which can be difficult to achieve for a spe-
cies that is absent nearly everywhere. For such species,
information is often only available in the form of oppor-
tunistic records that establish presence at some sites

(assuming these records can be verified to a degree that
excludes false detections), often collected over long time-
scales, but does not contain any information about the
observation process, such as the spatial pattern of search
effort, for example.

Opportunistic presence records can be analyzed using
species distribution models that are designed for presence-
only data, for example, MaxEnt (Phillips & Dudik, 2008)
and MaxLike (Royle et al., 2012). These methods estimate
a habitat-suitability index Hi that is not equivalent to Ψi

(Dorazio, 2012; Yackulic et al., 2013). However, under
certain conditions, Hi is related to Ψi in a sense that the
species is expected to occur at sites with high values of Hi

more often than at sites with low Hi. Hi are proportional
to Ψi if the detection probabilities pi are constant and if
there is no spatial sampling bias (Guillera-Arroita
et al., 2015; Merow et al., 2013).

For rare species for which presence records exist, one
could therefore increase the probability that all extant
occupied sites are found (PNA¼0) by fitting species distri-
bution models to these data and then biasing the search
toward sites with the highest predicted habitat suitability,
Hi. This approach can be successful (e.g., T.C. Edwards
et al., 2005; Guisan et al., 2006; Le Lay et al., 2010). How-
ever, the reliability of species distribution models
depends on the amount of data (Hernandez et al., 2006;
Pearson et al., 2007) and no algorithm predicts Hi consis-
tently well when there are small sample sizes (Wisz
et al., 2008).

Inference about habitat suitability for rare species can
be improved by borrowing occurrence information from
closely related or associated species as proxies (T.C.
Edwards et al., 2005; McCune, 2016). For instance,
T.C. Edwards et al. (2005) stratified their search effort for
their rare target species using a species distribution
model fitted to occurrence data for a common species
that is commonly associated with the target species.
McCune (2016) used data on common species associated
with the rare target species to assess species distribution
model performance even in the absence of additional
records of the rare species.

A species distribution model that predicts Hi well
may be able to direct searches toward those sites that
truly have the highest occupancy probabilities, Ψi.
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However, nondetections at these sites only establish
absence if the detection probability, pi, is 1. The detection
probability can be estimated by repeatedly sampling sites
(Guillera-Arroita, 2017) but obtaining useful estimates
can be difficult for rare species, as most searches do not
lead to any detections. In this case, repeatedly sampling
only those sites at which the species has already been
detected is better than re-sampling all sites (Specht
et al., 2017). In addition, information can be borrowed
from more common species with similar detection proba-
bilities (MacKenzie et al., 2005). For instance, Nichols
et al. (2000) grouped bird species based on prior experi-
ence of observational traits, and estimated detection from
data for the group of species, even though some rarer spe-
cies lacked sufficient observations to estimate species-
specific detection probabilities. However, rare species
may still have lower detection probabilities induced by
lower abundance.

We faced many of these problems associated with
rarity when working on the critically endangered Rose’s
mountain toadlet, Capensibufo rosei (SA-FRoG IUCN SSC
Amphibian Specialist Group, 2010). Historic records for
this species are sparse across both space and time, despite
considerable search efforts (Cressey et al., 2015; S. Edwards
et al., 2017). Furthermore, the lack of a breeding call
in this species (Grandison, 1980) presents an unusual
problem for detection of frogs, which are often detected
primarily by call (e.g., Measey et al., 2017; Shirose et al.,
1997). The known occupied range of C. rosei has declined
in recent decades, despite most of its habitat being protec-
ted (Cressey et al., 2015). A systematic search to determine
the number of occupied sites remaining and identify sites
for management interventions is therefore a conservation
priority (Measey, 2011).

Using C. rosei as a case study, we outline a search
strategy aimed at discovering unknown occupied sites
of a rare species and quantify the resulting increase in
the probability that all remaining occupied sites in a
given area are found, PNA¼0. Our search strategy consists
of seven steps: (1) Assemble a list of sites at which the
species is known to occur or has occurred historically
and survey these sites. (2) Fit a species distribution model
to these data of known extant or historic presence and
use the fitted model to stratify search effort across the
area of interest, based on predicted habitat suitability.
(3) Carry out searches at the selected sites while using
expert knowledge to guide the timing, methods, and sur-
vey effort to maximize detection probability. (4) At the
same sites, also search for and record detections of more
common proxy species which appear to require similar
habitat conditions. (5) Estimate detection probability for
the focal species where it is known to occur and learn
about the observation process from the more common

detections of the proxy species; (6) Evaluate the predic-
tive accuracy of the species distribution model using the
presence/absence of proxy species and apparently suit-
able microhabitat for the focal species in the searched
grid cells; (7) Estimate the probability that all extant
occupied sites have been found across the study
area. Steps 2–7 can be repeated until PNA¼0 reaches the
desired level.

MATERIALS AND METHODS

Study area and study species

Rose’s mountain toadlet (C. rosei) is endemic to fynbos
vegetation on the Cape Peninsula, South Africa (Channing
et al., 2017; Tolley et al., 2010). Only two extant breeding
sites were known at the beginning of this study, both
occurring within Table Mountain National Park: one in
the Silvermine section and one in the Cape of Good Hope
section (see Figure 1). Each breeding site consists of up to
10 individual breeding pools, typically still-standing water,
< 2 m in diameter, < 3 cm deep, usually within a radius
of less than � 200m in localized, ephermal seepages
within a wetland area (Becker et al., 2018; S. Edwards
et al., 2017). Although C. rosei has no breeding call and
therefore cannot be detected using auditory surveys, it
breeds in dense aggregations. Intensive surveys in pre-
vious years have established that the toads breed in
pools located in small clearings and avoid densely veg-
etated patches (Becker, 2017). These aggregations are
more easily seen than individual adults, and last for a
variable period of a few weeks to 50 days, depending
on the rainfall (Becker et al., 2018). The distinct and
dense masses of eggs and tadpoles are also relatively
easy to observe, and usually remain for > 2 months
(S. Edwards et al., 2017).

Historic observations and observations from the
breeding site monitoring over more than a decade, sug-
gest that breeding sites are highly localized, and may
remain roughly in the same location over many years.

We defined our study area as all land containing natural
fynbos vegetation, excluding intertidal zones (based on data
obtained from the City of Cape Town’s Open Data Portal:
https://web1.capetown.gov.za/web1/opendataportal/Default),
between latitudes: �33:890� and �34:407�, and between
longitudes: 18:515� and 18:280�, that is, the Cape Peninsula.
The 31,462 ha study area is mountainous, ranging from
sea level to 1086m. The weathering-resistant sand-
stone bedrock that is found across much of the penin-
sula creates rugged topography, and gives rise to the
dominant acidic, nutrient-poor silica soils (Cowling
et al., 1996).
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F I GURE 1 Potential range of Capensibufo rosei on the Cape Peninsula, South Africa (between latitudes: �33.890� and �34.407�, and
between longitudes: 18.515� and 18.280�), showing three-dimensional rendering of the topography. (a) Shows the approximate location of the

two previously known and one newly discovered breeding sites (SM, Silvermine; CoGH, Cape of Good Hope), because the precise locations are

sensitive information. (b) Shows the mean predicted habitat suitability (Hi) per 300 � 300 m grid cell overlaid on this map, and the 96 searched

cells indicated by black squares. (c) Shows the difference in predicted Hi between the first SDM and the second, after the inclusion of the new

record. Red indicates areas of higher predicted Hi in the second model, some of which are additional areas to search (circled areas)
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Seven-step search strategy

Our aim was to find additional breeding sites of C. rosei
and estimate the probability that no further unknown
occupied sites occur (1) across its entire range and
(2) on top of Table Mountain. The latter area is of par-
ticular interest because C. rosei has not been recorded
from this area since 1983, even though it historically
used to hold large occupied sites of this species (Cressey
et al., 2015).

Step 1: Compile list of extant and historic
presences

Cressey et al. (2015) assembled a list of historic presence
records for C. rosei, searched them and found no active
breeding sites except at two locations, the rest were pre-
sumed to be no longer extant. There were 17 possible his-
toric localities recorded in Cressey et al. (2015). Of these
localities, 11 were precise enough that we could use them
for species distribution modeling (spatial error <30 m).

Step 2: Stratify search effort according to
habitat suitability

Species distribution modeling
We fitted a species distribution model to 19 C. rosei
occurrence records.

These included nine historic records of presumed
extinct occupied sites (from Cressey et al., 2015) and
10 recent occurrence records from the two extant occu-
pied sites. The latter consisted of seven distantly spa-
ced (75–750 m) breeding pools and three records of
adults that were found >30 m away from the breeding
pools.

We used environmental predictor variables (Appendix
S1: Table S1) for which the spatial pattern is unlikely to
have changed substantially (Roubicek et al., 2010) over the
period in which the occurrence data were recorded (1950–
2014). Some variables focused on the broader scale habitat
context (such as vegetation and small-scale climatic varia-
tion), while some aimed to target the likely areas in which
suitable breeding pools would form (e.g., topography vari-
ables related to drainage patterns). We did not have access
to any remote-sensing variables that were capable of
directly detecting suitable breeding pools, mostly due to
their small size (often <0.2 m2 and <2 cm deep) and vary-
ing vegetation thickness.

These variables consisted of spatial data at 30�30 m
resolution, which we derived from a 10 m digital eleva-
tion model and map of vegetation types sourced from the

City of Cape Town (https://web1.capetown.gov.za/web1/
opendataportal/AllDatasets).

We used the vegetation data, excluding transformed
land (we classified land as “transformed” if none of the
natural vegetation types currently occur), to determine
the boundaries of the study area. We aggregated the digi-
tal elevation model to 30 m resolution and used it to cal-
culate slope, topographic position and two components
of aspect (north–south = cosine of aspect in degrees;
east–west = sine of aspect in degrees). These layers were
used to calculate total solar radiation received in January
and July using the “r.sun” function in GRASS (https://
grass.osgeo.org/grass72/manuals/r.sun.html). Mean max-
imum January and mean minimum July temperature
surfaces were provided by the South African Environ-
mental Observation Network (SAEON). These were inter-
polated by applying a Bayesian kriging approach (Finley
et al., 2015) to data from a network of 100 loggers sam-
pling temperature variation across the range in slope,
aspect, elevation, and distance to sea across the peninsula
(Slingsby & Ackerly, unpublished).

We fitted species distribution models using MaxEnt
(Phillips et al., 2004), which has a predictive accuracy
typically superior to other methods (Merow et al., 2013;
Pearson et al., 2007), especially with few available
occurrence records and no reliable absence data
(Hernandez et al., 2006; Wisz et al., 2008), as is the case
with C. rosei. MaxEnt has been used to aid the discovery
of new occupied sites or areas of occurrence for several
rare and threatened species (Fois et al., 2015; Le Lay
et al., 2010; Mizsei et al., 2016; Rebelo & Jones, 2010),
with as few as five occurrence records for model fitting
(Oleas et al., 2014).

We used MaxEnt’s default settings (autofeatures set-
ting in MaxEnt version 3.3.3k, October 2011), which are
appropriate for most purposes (Phillips & Dudik, 2008;
Warren & Seifert, 2011).

We used “bootstrap replicated run type” with maxi-
mum iterations set to 5000.

As an initial test of the predictive accuracy of our
model with the limited data available, we fitted five rep-
licates of each model, and included some of the records
for model fitting and others for model testing: we used
Random Seed setting, choosing 80% of records for fitting
and 20% for testing with each iteration. We then used
the resulting mean area under the [receiver–operator]
curve (AUC) values to select the best model. AUC is a
measure of the model’s predictive accuracy, based only
on the ranking of test locations (Merow et al., 2013). In
this case, the random 20% of the occurrence records
excluded from model fitting were contrasted against
randomly selected background points as pseudo-
absences. We initially fitted a model with all variables,
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then removed variables systematically from lowest to
highest relative variable importance. Where variable
pairs were correlated with r>0:8, we removed the less
important one (according to permutation importance
from MaxEnt output) because collinearity may affect
model predictions (Merow et al., 2013).

Stratification
We used the logistic output from the species distribution
model with the highest AUC score as a measure of habi-
tat suitability (Hi). We fitted species distribution models
at 30m resolution, because the habitat patches (i.e., eph-
ermal seepages) occupied by amphibians on this land-
scape are often small and we were concerned that
suitable habitat would be missed by the model if we
adopted a coarser scale.

After model fitting, we aggregated the 30�30 m grid
cells into 300�300 m grid cells as potential sites to sea-
rch for biological and field-logistical reasons. We
expected the frogs to have an activity radius of a few
hundred meters, and so could be found in the vicinity
of suitable sites, and we were confident that we could
thoroughly search grid cells of 300�300 m, therefore
maximizing the searched area for the fixed number of
grid cells we could visit. We used function aggregate in
package raster (Hijmans, 2019) in program R (R Core
Team, 2019) to construct the 300m stratification land-
scape, aggregating by maximum Hi.

We then used stratified random sampling to select
45 grid cells to be searched. We randomly selected nine
grid cells out of those with predicted Hi ≤ 0:95 and
Hi >0:85 (there were no grid cells with Hi >0:95), eight
with Hi ≤ 0:85 and > 0:75, seven with Hi ≤ 0:75 and
> 0:65, and so on. This procedure strongly biased the
inclusion probability toward grid cells with high suit-
ability, but included some grid cells with low
suitability.

Additional sites to search
The species distribution model (SDM) provides objec-
tive estimates of habitat suitability, but its predictive
ability is imperfect, due to several sources of error:
(1) lack of habitat variation due to few input locations;
(2) the model may not include all environmental vari-
ables/layers that are important for the species; (3) error
in the environmental variables/layers used; (4) error in
the species locality data; (5) SDM may not be fitted at
the most appropriate spatial scale. In this situation, it
may make sense to search extra locations that appear
suitable based on less easily quantifiable criteria. Fur-
thermore, searches for rare species often involve some
experts, which may have a sense of what constitutes a
suitable site for the target species. Expert knowledge is

often the only criterion used for guiding searches, and
rare species searches may be dependent on the buy-in
from such experts. Using only sites selected by an SDM
to guide searches discards such potentially useful infor-
mation, and may disenfranchise interested parties on
which the research is dependent. We therefore suggest
including expert opinion in site selection. Such sites
would nonetheless contribute data for testing SDM per-
formance, while not wasting effort on sites where the
absence of the target species is near certain.

In our case, the criteria for choosing such a site
included: (1) the presence of shallow, ephemeral seepages
for breeding; (2) less dense vegetation as C. rosei is only
known to breed in pools that are in small clearings; and
(3) the abundance of Arthroleptella lightfooti and/or
Strongylopus bonaespei calls, as these two species were
the most abundant proxy species at both known active
breeding sites. The abundance of Amietia fuscigula was
also sometimes a good indicator of shallow seepage, but
these were usually more abundant in overgrown sites,
which may not be suitable for C. rosei breeding. We
included data from a total of 96 grid cells: 44 chosen by
random-stratified sampling; 25 near or at historic breed-
ing sites (often a good starting point, as these sites con-
tained suitable habitat, at least historically); and
27 chosen by expert opinion, due to presence of suitable
seepages.

Step 3: Perform field searches

We thoroughly searched the selected sites by walking a
series of parallel line transects from the one edge of the
grid cell to the other and using search methods designed
to maximize detection of C. rosei. Expert knowledge and
previous studies (Becker et al., 2018; Cressey et al., 2015;
S. Edwards et al., 2017)) showed that C. rosei is most
detectable during the breeding season when adults are
more active and aggregate densely in the small, open
breeding puddles. The species can also easily be found
shortly after the breeding season when the dense clusters
of eggs and/or tadpoles are visible. We therefore focused
on locating breeding pools, and carried out the searches
on foot from when spawn first became evident (17 August
2015) until the last tadpoles metamorphosed at the
known occupied sites (7 October 2015). We searched suit-
able pools and seepages for C. rosei breeding particularly
carefully (see Study area and study species), but also
inspected deeper pools and streams, and dry areas. We
conducted searches during the day and used a high-
powered torch (225 lumen, LED Lenser) to further
increase the visibility of small amphibian adults, eggs,
and larvae.
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Step 4: Searching for habitat proxy species

We expected to find few or no new C. rosei occurrences
on our search. We therefore also searched for more com-
mon species that we regarded as habitat proxy species.
From these species, we expected to gain additional infor-
mation on whether the variables, modeling method, and
the spatial scale modeled at (30 � 30 m, scaled up to
300 � 300 m), were appropriate for predicting C. rosei
occurrence. We chose four anuran species as habitat
proxy species: Amietia fuscigula, Arthroleptella lightfooti,
Strongylopus bonaespei, and Strongylopus grayii. These
species commonly co-occur with C. rosei on a macro-
habitat scale. We suggest choosing at least one highly
similar, or several relatively similar proxy species for this
purpose. We measured niche similarity between the
proxy-species SDMs and the C. rosei SDM using
Schoener’s D and Hellinger’s I statistics (Warren
et al., 2008), using the package dismo (Hijmans
et al., 2017), program R (R Core Team, 2019). We also
tested for statistically significant niche convergence or
divergence (based on the D and I statistics) between
the proxy species and C. rosei using the background
similarity test (Warren et al., 2008) in the package
phyloclim (Heibl & Calenge, 2018) in program R.

Step 5: Estimate detection probability and learn
about the observation process

We searched the 300 � 300 m grid cells where we knew
C. rosei occurred three times each, using the standard
search protocol (see Step 3), including additional pres-
ence grid cells discovered during our search (five grid
cells total). These included sites with low expected detec-
tion probability due to dense vegetation and low apparent
density of toads (indicated by distance from central
breeding site and the absence of breeding pools). We then
estimated the detection probability per 300�300 m grid
cell, pi, as the proportion of surveys during which
we detected C. rosei, and calculated the confidence inter-
val of this estimate using profile likelihood (Data S1:
[DS1EstimatingProfileLikelihoodOfDetectionProbability-
PerGridCell.R]) in program R 3.6.1 (R Core Team, 2019).

We further attempted to learn about the observation
process from examining detections of the proxy species.
We detected the presence of proxy species in three main
ways: eggs/tadpoles, adults/subadults, and calls. Because
C. rosei does not call (Grandison, 1980), we calculated the
decrease in pi that resulted when call detections were
omitted for each proxy species, as: the number of
searched grid cells where the species was detected by call

only, divided by the total number of searched grid cells
where the species was detected.

The variation in complex life histories of these proxy
species was expected to influence detection properties
considerably: A. lightfooti does not have free-living tad-
poles, but breeds terrestrially (Rose, 1950); A. fuscigula
may remain in the tadpole life stage for more than a year,
while S. bonaespei and S. grayii tadpoles develop much
more rapidly; S. bonaespei appeared to call much less fre-
quently after July/early August, and fewer tadpoles were
observed by late September, while the other species
appeared to call consistently throughout the search
period; A. fuscigula usually calls infrequently; S. grayii
calls relatively frequently and A. lightfooti calls consis-
tently throughout the day.

Step 6: Evaluate the species distribution model

The surveys provide a new sample of data on which the
performance of the SDM can be tested. However, with no
or few new detections such a test may not be particularly
informative. We therefore also tested the ability of the
model to predict presence/absence of two indicators for
suitable C. rosei habitat.

The first indicator was whether ≥ 5% of a 300�300 m
searched grid cell contained shallow seepage habitat sim-
ilar to known C. rosei breeding puddles (shallowwetland).
The second measure was the presence of two out
of the three proxy species: A. fuscigula, A. lightfooti, and
S. bonaespei (2=3 closest spp:), in high enough abun-
dances to be detected on a single search. We did not con-
sider the fourth proxy species, S. grayii, which turned out
to have less similar habitat preferences than the other
three. We chose this as a direct measure of C. rosei habi-
tat occurrence because two of these species were always
present in considerable abundance at all current and his-
toric C. rosei breeding grid cells, and in most suitable-
looking C. rosei breeding habitat. These three species
were fairly similar in terms of predicted habitat suitability
to C. rosei (see Table 1).

As a further test of the predictive ability of SDMs in
our system, we fitted separate models to each of the proxy
anuran species using occurrence records from several
databases (see Appendix S1: Table S2), and using the
same approach and initial variable set as for C. rosei (see
Step 2). We then tested the models’ predictive perfor-
mance for these proxy species on the independent pres-
ence/absence data set from the searches.

As a measure of predictive ability of each SDM, we
calculated the AUC using the package AUC (Ballings &
Van den Poel, 2013) and manipulated the spatial files
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using the package raster (Hijmans, 2019) in program R
(R Core Team, 2019).

This analysis and all subsequent analyses involving
habitat suitability were based on 300�300 m grid cells
using the mean of all 30�30 m grid cells contained
within it.

We based our calculation of AUC on the 300�300 m
resolution grid cells because the validation data were col-
lected at that resolution for biological and logistical rea-
sons (see Step 3 above).

Step 7: Estimate the probability that all extant
occupied sites have been found

After completing the surveys, we calculated whether we
found all occupied sites that existed in the search area,
that is, an estimate of the probability that no further
unknown occupied sites existed PNA¼0 and by how much
our search had increased that probability. We carried out
this calculation as follows: if we knew the probability of
each grid cell i to be occupied, Ψi, before we started the
surveys, we could calculate PNA¼0 ¼

QK
i¼1 1�Ψið Þ for the

K grid cells in which the species had not been found.
Grid cells in which the species was found were assumed
to have a Ψi ¼ 1, and were therefore excluded from the
area of interest, A. We do not have Ψi but we had esti-
mates of habitat suitability Hi from the SDM, which are
proportional to Ψi if (1) the detection probabilities pi are
constant, (2) if there is no spatial sampling bias and (3) if

the SDM successfully captures variation in Hi (Guillera-
Arroita et al., 2015). In our case, pi appeared to be close
to 1 despite varying conditions. Spatial sampling bias in
historical presence records is also likely to be small as the
potential range of C. rosei was small and accessible. In
addition, we thoroughly checked the SDM (see Step
6 above) to increase our confidence in its ability to esti-
mate Hi.

If it is reasonable to assume that Ψi /Hi, the next step
is to estimate a conversion factor c so that Ψi ¼ c�Hi.
We can get an estimate of c based on the expected values
of the two distributions, E Ψð Þ¼ c�E Hð Þ, that is, c¼ E Ψð Þ

E Hð Þ.
We calculated E Hð Þ as the mean of the Hi values
predicted by the SDM. We did not have a direct estimate
of E Ψð Þ, but we were able to give a lower and an upper
bound on this quantity. We know that the species occurs
in two grid cells. Assuming there is at least one additional
unknown occupied site, the minimum for the mean occu-
pancy probability is E Ψð Þmin ¼ 3

n where n is the total num-
ber of grid cells in the study area. Given the known
decline of the species (Cressey et al., 2015) and its small
potential range which is relatively well explored, we
think it unlikely that more than seven total occupied sites
remain (half the maximum number of breeding sites ever
recorded). We therefore used E Ψð Þmax ¼ 7

n as an upper
bound and calculated PNA¼0 using these two values for
E Ψð Þ. For the entire study area, n¼ 3,883 excluding cells
without data, which were in the ocean or city; E Hð Þ¼
0:0388; E Ψð Þmin ¼ 0:000772; E Ψð Þmax ¼ 0:00180; cmin ¼
0:0199; cmax ¼ 0:0464. For the top of Table Mountain
(a smaller area of interest): n¼ 296; E Hð Þ¼ 0:1046;
E Ψð Þmin ¼ 0:00208; E Ψð Þmax ¼ 0:00485 (no c calculated;
rather, expected values of Ψ were calculated as the mean
of the Ψi values for the Table Mountain area).

For the grid cells that we included in the search, the
outcome of the survey changed Ψi. If the species is found
in a grid cell, then the postsurvey occupancy probability
Ψ’

i ¼ 1 for that grid cell is excluded when calculating
PNA¼0. For a grid cell where the species is not found, the
postsurvey occupancy probability can be calculated using
Bayes’ theorem:

Ψ’
i ¼

Ψi� 1�pið Þ
Ψi� 1�pið Þþ 1�Ψið Þ

where pi is the probability of detecting the species if it is
present (Peterson & Bayley, 2004; Wintle et al., 2012). We
assumed pi to be constant across all searched grid cells
and used the estimate obtained in Step 5, above. For grid
cells that we did not search, Ψ’

i ¼Ψi, as we obtained no
new information on occupancy in these grid cells.

We then calculated the probability that all extant
occupied sites had been found after the search as

TAB L E 1 Evaluation of model-stratification and search

methods. “AUC” is the area under the receiver–operator curve as
an indicator of out-of-sample predictive power of species

distribution models (SDMs) fitted to data for four proxy species, or

the proxy measures of C. rosei habitat: “2/3 closest spp.” is the
presence of two out of the three proxy species with the most similar

predicted habitat; “shallow wetland” is, if ≥ 5% of a grid cell is

covered in shallow wetland. The sample sizes, n, are the number of

grid cells on which these AUC values are based. Schoener’s D and

Hellinger’s based I indices measure the similarity between the

habitat suitability predicted for each proxy measure and that

predicted for C. rosei; “shallow wetland” was not derived from a

SDM and therefore D and I were not calculated

Proxy species/measure AUC n D I

Amietia fuscigula 0.84 72 0.531 0.814

Arthroleptella lightfooti 0.82 72 0.566 0.842

Strongylopus bonaespei 0.85 72 0.552 0.842

Strongylopus grayii 0.66 72 0.425 0.737

2/3 closest spp. 0.81 72 0.587 0.862

Shallow wetland 0.82 86
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P’
NA¼0 ¼

QK
i¼1 1�Ψ’

i

� �
. We calculated the factor by which

our search increased the probability that all occupied
sites are found,

P’
NA¼0

PNA¼0
, for (1) the entire potential range of

C. rosei and (2) the top of Table Mountain.

RESULTS

Search results

We searched 96 grid cells in total: 44 chosen by random-
stratified sampling; 25 near or at historic breeding sites;
27 were searched either during this study due to presence
of suitable wetlands, or inadvertently searched shortly
before this study (see Figure 1b). We discovered one new
C. rosei breeding site, within � 3 km of a previously
known breeding site (Figure 1a). The proxy species were
all much more common and widespread in the study area
than C. rosei. Out of the 72 grid cells adequately searched
for all the proxy species Amietia fuscigula was observed
in 29, Arthroleptella lightfooti in 45, Strongylopus
bonaespei in 20, and Strongylopus grayii in 20 grid cells.

Detection probability

Multiple C. rosei adults, eggs, and tadpoles were detected
on all 15 searches of the five known-presence grid cells,
some of which were only discovered during this search
and included a few grid cells adjacent to the main breed-
ing sites. Assuming that the detection process follows a
binomial distribution, the maximum likelihood estimate
for the detection probability was 1. The 95% confidence
interval was 0.88 to 1, based on profile likelihood.

Examining the detections of the proxy species, we
found that calls were the dominant form of detection
for A. lightfooti, but constituted a much smaller percent-
age of detections for A. fuscigula, S. grayii, and
S. bonaespei; eggs/tadpoles were the dominant detection
mode for both S. bonaespei and S. grayii, while adult/
subadult detections were dominant for C. rosei and
A. fuscigula (Figure 2). The omission of call detections
resulted in a 0.78 reduction in detection probability per
searched grid cell of A. lightfooti, but was much less
severe for the other species: 0.15 for S. grayii, 0.05 for
A. fuscigula and no effect on S. bonaespei detection
(Figure 2).

Species distribution model predictive
accuracy

The final chosen SDM for C. rosei showed good model fit
using the presence-only data, with AUC = 0.974. The
proxy-species SDMs also fitted well to the available data
and all preliminary (presence-only) AUC values were
> 0:8 (Appendix S2: Table S1). The SDM fitted to the
C. rosei data predicted high suitability, Hi, only for a
small proportion of the study area (Figures 1b and 3).
Median Hi was 0.016. The newly discovered breeding site
was found in a grid cell with Hi of 0.080. This site was
chosen based on expert opinion: the site contained open,
shallow wetland, and many S. bonaespei and A. lightfooti
were heard calling there. The site was next to the road,
and was identified en route from the southernmost
breeding site during a standard monitoring visit.

The models fitted to three of the proxy species and
both habitat measures had a high out-of-sample
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predictive accuracy (AUC > 0.8; Table 1). For one further
proxy species (S. grayii), the SDM showed only moderate
predictive accuracy (Table 1). This species was also the
least similar to C. rosei in terms of predicted habitat suit-
ability, with similarities from greatest to least being
(Table 1): A. lightfooti, S. bonaespei, A. fuscigula and
S. grayii. According to the background similarity tests,
none of the proxy species’ predicted niches were signifi-
cantly more or less similar to C. rosei than expected by
chance.

Probability that all extant occupied sites
are known

The probability that we discovered all extant occupied
sites in the searched area, PNA,searched¼0, was 1 (95% confi-
dence interval = 0:920�1 or 0:965�1, using the lower
and upper bound on the estimate of Ψ’). For the entire
area, across all grid cells where C. rosei remained
undetected, PNA¼0 remained low (Table 2). Our search
improved the certainty that all occupied sites had been
found by a factor of � 1:8, dependent on Ψ’(Table 2). The
estimated probability that no more occupied sites
occurred on Table Mountain was � 0:5 after the search,
which improved by a factor of � 1:3 compared with
before the search (Table 2).

Guiding the next search

Our search has improved our knowledge in several ways
that could guide further searches. First, the newly discov-
ered occupied site broadened our knowledge of C. rosei’s
preferred habitat as we found it in a location for which
our SDM predicted relatively low habitat suitability.
Moreover, the observed habitat at several historic loca-
tions, which were often imprecise, did not contain
suitable-looking habitats (shallow wetland for C. rosei
breeding), whereas some nearby areas did. We used a
location in these nearby wetland patches, in addition to
the new occupied site, to re-fit the SDM, that is, using
improved knowledge of the habitat from our search.

The habitat suitability per grid cell of our newly fitted SDM
based on these methods, was similar to the initial SDM
(r = 0.85), but did highlight several additional priority
areas to be searched (Figure 1c). The new SDM showed an
increased predictive performance in the searched grid cells,
for both proxy measures of C. rosei habitat: 2=3 closest spp:
AUC = 0.827 (was 0.818) and shallowwetland AUC =

0.844 (was 0.825).

DISCUSSION

Rare species tend to be particularly important for
conservation. They also tend to be difficult to assess
quantitatively because data on them tend to be sparse
(Thompson, 2004). We needed to know whether any
undiscovered occupied sites of the rare Rose’s mountain
toadlet, C. rosei, remained in addition to the two occupied
sites that were known at the beginning of the study. We
followed a seven-step procedure designed to make the
best use of the information we could get—both on
C. rosei and auxiliary information—to guide a search and
quantify the probability that no further occupied site
exists.

We used a combination of Hi from the SDMs and
visible criteria based on expert opinion, to guide site
selection. This approach was useful for maintaining the
involvement of experts, and may be particularly useful in
the early phases of the search, when few locations are
available to fit the SDM. The value of including expert
opinion in selecting sites here resulted in the discovery of
an additional C. rosei breeding site (Figure 1a).

Even though we concentrated our search on areas
that were most likely to be occupied by C. rosei, the prob-
ability of at least one undiscovered C. rosei occupied site
remaining within its potential range, PNA¼0, was still high
due to the proportionally small area that we could search
(see Figure 1b). Our approach for using a SDM to esti-
mate occupancy probabilities was, however, useful for
assessing the search results in smaller areas of impor-
tance. We contend that C. rosei is most likely locally
extinct from Table Mountain. This was a historic strong-
hold for the species in a world-renowned tourist

TAB L E 2 Probability of no more unknown occupied sites of C. rosei occurring (PNA¼0) in the study area and on Table Mountain, after

the search, based on two prevalence scenarios (E Ψð Þ¼ 3
n and E Ψð Þ¼ 7

n); the factor by which the search has improved PNA¼0

Area covered Value E Ψð Þ¼ 3
n E Ψð Þ¼ 7

n

Study area PNA¼0 0.072 0.002

PNA¼0 factor improved 1.416 2.258

Table Mountain PNA¼0 0.623 0.331

PNA¼0 factor improved 1.155 1.403
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destination of conservation importance (Picker &
Samways, 1996; Standish et al., 2004).

Suitability of the species distribution
model

The SDM predicted many more low-suitability sites than
high-suitability sites (Figure 3). Given the limited num-
ber of sites we could search in total, we felt that it was
unlikely that we could learn much about the model from
focusing a considerable part of our effort on the low-
suitability sites. However, we did spend some effort on
sites of low predicted suitability, to explore the possibility
of uncovering substantial occupied sites in areas thought
to be unsuitable (as in McDonald, 2004).

We checked the fitted SDM for its ability to predict
known current and historic occurrences, and for its abil-
ity to predict apparently suitable habitats, despite the
absence of C. rosei. In this case, this was indicated by the
presence/absence of shallow wetlands, and the concur-
rent presence/absence of at least two of the three most
similar (in terms of predicted Hi) habitat proxy species.

The C. rosei SDM had a high discriminatory capacity
with an AUC value (0.97) that is often interpreted as
indicative of very high performance. However, high
values of AUC do not guarantee that the model describes
variation in habitat suitability well, especially with the
large number of grid cells with a low habitat suitability
across the landscape that we observed (see Figure 3, Lobo
et al., 2008; Jiménez-Valverde, 2012). The single new
occupied site we found was in a grid cell that had a rela-
tively low predicted suitability of 0.08, even though this
was considerably higher than the median predicted suit-
ability. Due to the extreme rarity of C. rosei, its naturally
overdispersed distribution and/or poor dispersal ability
(Tolley et al., 2010; Channing et al., 2017), and in light of
recent enigmatic declines (Cressey et al., 2015), it is
expected that most sites predicted as suitable will be
unoccupied. The presence/absence of shallow seepages
and the concurrent presence/absence of the two most
similar habitat proxy species, indicated that the SDM
predicted key habitats relatively well (see Table 1:
shallowwetland; 2=3closest spp:). However, the discovery
of C. rosei in a site of low predicted Hi indicated that pat-
ches of good habitat were missed by our SDM, and sub-
stantiates the notion of including sites chosen by other
criteria.

We also used proxy species to obtain a sense of how
well the modeling approach worked in our environment.
The high out-of-sample predictive ability—judged by
AUC—of the models for the three proxy species with the
most similar habitat requirements as C. rosei (Table 1)

suggested that the habitat variables and scale we used
were appropriate for predicting wetland anuran occur-
rence in the study area. As none of the proxy species’
predicted niches were significantly more similar to
C. rosei than expected by chance, these contributions to
directly testing the C. rosei SDM’s accuracy, were limited.

The choice of the type of SDM for our context is an
important consideration. We chose to use MaxEnt
(Phillips & Dudik, 2008) which has some limitations
(Dorazio, 2012; Yackulic et al., 2013), some of which are
shared by other methods that use presence-background
data (Merow et al., 2013). The key role of the SDM in our
workflow was to provide a best possible description of
the variation in habitat suitability across the study area,
given the available data. Other model choices may be
more sensible in different situations. For example, we
would have preferred to use methods that estimated
occupancy probabilities directly while accounting for the
observation process (e.g., MacKenzie et al., 2017). With
only two known occupied sites and no prior data on
detection probability, however, this was not possible.

Detection probability

We never failed to find the species during our repeat
visits to sites we knew were occupied, suggesting a high
detection probability for searches carried out during the
breeding season and the tadpole season. There is a
chance that detection probabilities at sites of known
occurrence are higher than at other sites, either because
the observer is unconsciously guided by prior knowledge
of where to find individuals or because the known occu-
pied sites may be the larger and denser occupied sites
that were more readily discovered in the first place. We
always started our searches on the outskirts of the breed-
ing sites, where C. rosei densities were lower and vegeta-
tion was often thicker, which would reduce detection
probability. Despite this, we always detected multiple
adults, eggs, or tadpoles within minutes on each repeat-
search. The newly discovered breeding site was also spot-
ted within a few minutes of the first visit to that grid cell.
We are confident that the high detection probabilities
are real.

We further examined the detections of the proxy spe-
cies to assess how the lack of an advertisement call in
C. rosei might affect its detection. Call detections were
disproportionately important for the detection of
A. lightfooti due to its small size, cryptic behavior and ter-
restrial breeding (Rose, 1950). By contrast, the omission
of call detections had little impact on us finding the other
proxy species (see Figure 2). These species were typically
detected either as tadpoles or as subadults, while
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searching through puddles and wetland patches. Where a
proxy species was only detected by call in a particular
site, this was usually the result of a very low density
(or absence) of either tadpoles or subadults, or because
adults were calling from deeper pools, which were not as
closely inspected (not ideal microhabitat for C. rosei).
Due to the aggregate breeding habits of C. rosei, we find
it unlikely that very low density populations would per-
sist, and therefore be missed. The proxy-species data also
indicated that detection probabilities and properties
affecting them can be highly species specific, as reported
by several other studies (Bailey et al., 2004; Kroll
et al., 2008; Haynes et al., 2013; Smith et al., 2014).
Closely related species may have more similar detection
properties to the target species, and would be useful for
“borrowing” detection data. The lack of a well studied
congener species in this case may have reduced the utility
of borrowing detection probability data.

The detection process consists of multiple components
related to suitable habitat being available, animals being
present in the habitat at the time of the survey, animals
being detectable at the time of the survey, and detectable
animals actually being detected (Nichols et al., 2009). Our
estimated detection probability describes the last compo-
nent, but it may often be useful or even necessary to col-
lect data that allow one to estimate (some of) these
components separately (e.g., Amundson et al., 2014). By
concentrating our searches on a time window when some
life stages (eggs, tadpoles) were confined to small puddles,
we ensured that the species was present and detectable.
The process of detecting suitable habitat can be broken
down into two components. First, one needs to know what
constitutes suitable habitat for the species in question and
second, one needs to detect this habitat when it is present.
While suitable-looking habitats were easy to detect in our
relatively small grid cells that could be searched thor-
oughly, the notion of what constitutes suitable habitat was
necessarily based on the relatively few sites where this spe-
cies was found currently and historically. The rarer a spe-
cies, the less is generally known about the suite of habitats
in which that species can persist. For such species, habitat
suitability needs to be periodically re-evaluated as new
information becomes available.

Habitat suitability and occupancy
probability

To estimate the probability that no undiscovered occupied
site remains, PNA¼0, we needed an estimate of the proba-
bility that individual sites were occupied, Ψi. Ideally,
these site-specific occupancy probabilities should be
estimated directly, for example, using occupancy models

(MacKenzie et al., 2017). Occupancy probabilities
are difficult to estimate for rare species for which few
data are available, even though recent advances in
data integration allow for ever more efficient use
of data (Koshkina et al., 2017; Miller et al., 2019; Renner
et al., 2019).

With only two known breeding sites, each represen-
ted by one or two occupied sites (300 � 300 m) at the
start of our study, we did not have enough data to esti-
mate occupancy probabilities directly. Instead, we used
methods that estimate a relative measure of habitat suit-
ability, Hi, based on all the information we could obtain
about C. rosei occurrence. We assumed that these
habitat-suitability estimates were proportional to occu-
pancy probabilities (Guillera-Arroita et al., 2015) and
used upper and lower bounds on prevalence as an esti-
mate of mean occupancy across the entire range to con-
vert Hi to Ψi. The proportionality assumption could be
relaxed somewhat if multiple estimates of occupancy
probabilities could be obtained, either for some of the
sites or for groups of sites. In that case, the distribution of
Hi could be matched more closely to the distribution of
Ψi, for example, by moment matching, so that both mean
and variance would be preserved.

A next step would be to explore whether the data we
collected during these surveys would be sufficient to sup-
port a SDM that integrated these data with the presence-
background data that were available at the start of our
study and would yield direct estimates of Ψi (Koshkina
et al., 2017).

Are there any undiscovered C. rosei
occupied sites left?

Our searches almost doubled the estimated probability
that no further undiscovered occupied sites existed,
which was nevertheless still low after the search
(PNA¼0 � 0:04, see Table 2). The probability that at least
one undiscovered occupied site remained, is therefore
still high. With the large number of sites that had low
predicted habitat suitability, the possibility of further
existing occupied sites across the entire potential range of
this species will be difficult to rule out. However, the
method can be used to estimate the expected effective-
ness of different search strategies in increasing PNA¼0 and
so guide searches.

We view the search for very rare species as an itera-
tive process guided by the approach we suggest here. The
next step would be to select the next set of sites to be
searched, guided by the updated habitat-suitability esti-
mates (see Figure 1c), and based on priorities. For
instance, one reasonable next step would be to focus
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search efforts on sites for which estimated habitat suit-
ability increased most after refitting. This would direct
the search to include the new information gained
(on additional suitable habitat) from the previous search.
The anticipated gain from different search options could
be compared in terms of the expected change in PNA¼0

one could achieve.

CONCLUSIONS

We present a systematic approach aimed at estimating the
probability that no undiscovered occupied site remained
in an area. While the presence of undiscovered occupied
sites remains difficult to rule out across large areas, our
approach is most useful in smaller target areas for particu-
lar management interventions. In this case, it appears that
C. rosei is locally extinct from Table Mountain, a historic
stronghold for this species (Cressey et al., 2015). Our
method may also be used to identify potential sites for spe-
cies re-introductions, based on predicted suitable habitat
and probable local extinctions, provided the initial cause
of extinction is being managed. Furthermore, the spatial
pattern of high versus very low predicted habitat suitability
(Figure 1b), suggested that the remaining suitable habitat
for C. rosei is rare and fragmented. Natural recolonization
of these habitat patches may be highly unlikely.

In contrast with previous methods, our approach takes
into account multiple sources of uncertainty when esti-
mating the probability that all occupied sites of a rare spe-
cies are known: uneven distribution, detection probability,
modeling accuracy, and available ecological information.

It also makes efficient use of limited occurrence and
observational data, all that is normally available for very
rare species that are hard to sample (Thompson, 2004).

Searches for rare species regularly fail, and it is
unknown whether such a result is evidence of true
absence, or if it is worth spending more resources on
increased search effort.

Using our method (and the resulting metrics) it is possi-
ble to make objective decisions about whether or not to
repeat searches, and what is the relative likelihood of
achieving the desired outcome. Our approach can help to
quantify the amount of resources and money to be spent
on searches proportionate to the rarity of the target species.
As an added benefit, our approach also allows the gather-
ing of potentially new and important data on non-target
species, through targeted spending on rare species.
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