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Does the spatial sorting of dispersal traits affect the 
phenotype of the non-dispersing stages of the invasive 
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In amphibians, spatial sorting progressively enhances the dispersal capacities of dispersing stages in expanding 
populations but may enhance or limit the performance of the earlier non-dispersing stages. Phenotypic traits of 
non-dispersing tadpoles and metamorphs can be coupled, through carry-over effects and trade-offs, or decoupled 
to dispersal traits in adults. We used the globally invasive amphibian, Xenopus laevis, to examine whether spatial 
sorting of adult phenotypes affects the phenotype of larval stages to metamorphosis in the core and at the periphery 
of an invasive population in France. We combined common garden laboratory and outdoor experiments to test the 
effect of parental pond location (core or periphery) on morphology, development and survival to metamorphosis and 
found no differences between tadpoles. After metamorphosis, the only difference observed in either of the experiments 
was the larger body size of metamorphs from the periphery, and then only when reared in the laboratory. Differences 
in metamorph size may indicate that a shift of dispersal traits occur after metamorphosis in X. laevis. Thus, our 
findings illustrate that decoupled evolution through spatial sorting can lead to changes of X. laevis adult phenotypes 
that would enhance dispersal without affecting the phenotype of tadpoles before metamorphosis.

ADDITIONAL KEYWORDS:  Anura – decoupling – development – dispersal – metamorph – morphology – 
Pipidae – survival – tadpoles.

INTRODUCTION

The need for organisms to allocate resources and energy 
to survival, reproduction and dispersal generates 
trade-offs that constrain their anatomy, physiology 
and behaviour (Burton et al., 2010). In an expanding 
population, trade-offs may be altered at the range 
periphery, brought about by the evolution of dispersal 
traits (Phillips et al., 2010). Essentially, individuals 
with the best dispersal capacities, e.g. those that 
allocate more resources to dispersal, are more likely 
to meet and mate at the outermost sites (Travis and 
Dytham, 2002). If these traits are heritable, this can 

induce generational shifts in behaviour [e.g. increase 
in boldness and exploratory behaviour (Gruber et al., 
2017)], morphology [e.g. larger wing size (Phair 
et al., 2018); decreased body length (Amundsen et al., 
2012); wider head widths (Hudson et al., 2018)] and 
physiology [e.g. alterations in immune function 
(Llewellyn et al., 2012; Ronce and Clobert, 2012; Brown 
et al., 2015a; Brown et al., 2015b); decrease in standard 
metabolic rate (Louppe et al., 2018)]. Ultimately, novel 
phenotypes with higher dispersal capacities may 
emerge at the range periphery (Travis and Dytham, 
2002; Simmons and Thomas, 2004; Shine et al., 2011). 
This process is known as spatial sorting and predicts 
the progressive broadening of the dispersal kernel and 
the acceleration of population spread of a species at 
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the periphery of the range (Travis and Dytham, 2002; 
Phillips et al., 2008; Shine et al., 2011; Chuang and 
Peterson, 2016; Pizzatto et al., 2017).

A more nuanced view of spatial sorting emerges for 
organisms with complex life cycles, like insects, fish or 
amphibians, in which dispersal occurs at a particular 
ontogenetic stage. Although in some amphibians 
only adults disperse (Cayuela et al., 2018), one or 
more of their earlier life-history stages experience a 
range of different environmental conditions (Chuang 
and Peterson, 2016). The environmental pressure on 
traits expressed in an earlier life stage can affect the 
dispersal ability of a later life stage through carry-over 
effects [e.g. as in the invasive damselfly, Coenagrion 
scitulum, (Therry et al., 2014)], resulting in the 
coupling of different traits across life-history stages 
(Moran, 1994; Wollenberg Valero et al., 2017). In frogs, 
tadpoles and adults can exhibit morphological and 
ecological divergence due to morphological features 
being controlled by independent stage-specific genes 
(Sherratt et al., 2017). For example, a recent study by 
Wollenberg Valero et al. (2017) demonstrated that a 
large proportion of the genes coding for morphological 
traits of the tadpoles and adults of the African clawed 
frog, Xenopus laevis, are stage-specific. Thus, we might 
expect that morphological traits will be decoupled 
between X. laevis tadpoles and adults. However, traits 
can be coupled by the carry-over effects of the trade-
offs experienced at an earlier stage. For instance, 
accelerated development in tadpoles of the common 
parsley frog, Pelodytes punctatus, is coupled with lower 
body mass at metamorphosis (Richter-Boix et al., 2006). 
This finding corroborates those of other studies on 
amphibians that have described the carry-over effects 
of tadpole life-history to adult fitness (Johansson et al., 
2010; Tejedo et al., 2010; Yagi and Green, 2017).

Morphological and developmental traits of tadpoles 
have been coupled to traits relevant to dispersal in 
adults, such as endurance and speed (e.g. Relyea, 2001; 
Chelgren et al., 2006; Yagi and Green, 2018). Tadpole 
snout-to-vent length (SVL) has been coupled to 
tadpole stamina [e.g. American toad, Bufo americanus 
(Wassersug and Feder, 1983)] and metamorph size 
[e.g. wood frog, Lithobates sylvatica (Relyea, 2001)]. 
In turn, larger SVL at metamorphosis is coupled with 
survival and endurance in adults [e.g. as in Pelophylax 
sp., and Rana sp. (Altwegg and Reyer, 2003; Chelgren 
et al., 2006)]. Smith-Gill and Berven (1979) described 
the importance of the correct timing of metamorphosis 
for metamorph SVL. The time to metamorphosis 
(duration of the larval period) is coupled to adult 
hind limb length [e.g. as in wood frogs, Lithobates 
sylvatica (Relyea, 2001)]. Shorter larval development 
usually decreases hind limb length (Gomez-Mestre 
and Buchholz, 2006; Tejedo et al., 2010; Gomez-Mestre 
et al., 2013) due to thyroid hormone (thyroxine, T4) 

action (Eddy and Lipner, 1976; Fort et al., 2007). Finally, 
survival of larvae to metamorphosis is coupled to adult 
reproductive success [e.g. leopard frog, Lithobates onca 
(Goldstein et al., 2017)]. However, traits can be coded 
by different genes that result in adult and tadpole 
phenotypes developing independently, also known as 
decoupling (Wollenberg Valero et al., 2017).

Spatial sorting has been demonstrated in adults of an 
invasive population of X. laevis in France (Louppe et al., 
2017; Courant et al., 2017; Courant et al., 2019a; Courant 
et al., 2019b; Padilla et al., 2019). Adults were found to 
lower resource allocation to reproduction at the periphery 
of the invasive range (Courant et al., 2017) and increase 
resource allocation to physiological and morphological 
traits relevant to dispersal (Louppe et al., 2017; Padilla 
et al., 2019). The adults from the range periphery display 
higher endurance, lower standard metabolic rate and 
longer relative hind limbs than adults from the range 
core (Louppe et al., 2017; Louppe et al., 2018; Courant 
et al., 2019a). The population has undergone expansion 
for ~40 years from a single introduction point (Fouquet 
and Measey, 2006). Dispersal occurs overland and after 
metamorphosis, even though all stages of this species 
are predominantly aquatic (Measey, 2016, Courant et al., 
2019b).

We asked whether the spatial sorting patterns 
observed in adults generate variation in tadpole 
phenotypic traits across the invasive range. We 
formulated two hypotheses. Firstly, we hypothesized 
that morphological traits such as SVL of tadpoles 
and metamorphs are targets for spatial sorting at the 
periphery of an expanding population. We expect that 
metamorphs at the periphery will have larger SVL [as 
seen in cane toads, Rhinella marina (Cabrera-Guzmán 
et al., 2013)]. A larger body size increases dispersal 
propensity and capacity of individuals by improving 
locomotor performance such as endurance during the 
dispersal stage (Cayuela et al., 2020). Secondly, we 
hypothesize that larval life-history traits, such as time 
to metamorphosis and survival, are also targets for 
spatial sorting (see Phillips et al. 2010). Xenopus laevis 
adults have longer relative hind limbs at the periphery 
(Louppe et al., 2017; Padilla et al., 2019). Thus, we 
expect a longer larval period (i.e. postponement of 
the timing of metamorphosis) and longer hind limbs 
in metamorphs at the periphery. Lastly, we measured 
survival to assess whether the cost of resource 
re-allocation from reproduction to dispersal could be 
incurred by adult X. laevis at the periphery. We expect 
a mismatch in survival between the core and periphery 
as dispersal ability and survival in novel environments 
are important in shaping invasive distribution ranges. 
Beyond these theoretical predictions, little is known 
about whether spatial sorting for dispersal during 
range expansion impacts traits at the dispersing stage 
only or at all stages for species with complex life cycles. 
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For example, larvae of the invasive cane toad (Rhinella 
marina) have been shown to have faster growth rates 
at the periphery of their invasive distribution than at 
the core (Phillips et al. 2010).

To test our hypotheses, we conducted experiments 
in outdoor mesocosms and in laboratory microcosms. 
Laboratory and outdoor experiments each provide 
complementary and essential information (as seen 
in Morin, 1998). Mesocosms allow for exposure to the 
natural variation in the local environment and a larger 
sample size of individuals that increases the statistical 
power to detect effects (Skelly and Kiesecker, 2001). 
However, conducting experiments in the field can 
result in measurements with higher variation and less 
precision among replicates (Morin, 1998). In contrast, 
the standardized experimental conditions of laboratory 
microcosms, such as light intensity, water volume or 
tadpole density reduce the environmental noise on the 
measured responses. Laboratory experiments have 
nonetheless been criticized for being less realistic 
than field experiments (Skelly and Kiesecker, 2001). 
Therefore, in response to previous criticisms of both 
experimental venues we used both. Over 10 weeks, 
we surveyed the development of X. laevis tadpoles in 
the French invasive range, from free-swimming larvae 
to metamorphosis. We tested the effect of location 
of the parental pond in the colonized range (core or 
periphery) on morphological traits related to dispersal 
(SVL and hind limb length), time to metamorphosis 
(development) and survival to metamorphosis.

MATERIAL AND METHODS

Study Site

The population of X. laevis, is thought to have been 
introduced in the 1980s in western France (Fouquet 
and Measey, 2006). The invasive range now covers 
~4500 km2 (Vimercati et al., 2020). This area is 
characterized by a high density of ponds and a dense 
hydrographic network (Vimercati et al., 2020). The 
population has spread unevenly from the introduction 
site. There are no climatic differences between the 
core and current periphery of this population as 
they both are within the Oceanic climatic region. We 
sampled six ponds (Fig. 1). Three ponds were located 
at the range core. To ensure sampling of the true core, 
sampling sites were situated close to the introduction 
point: site 1 (47°00’38.2” N, 0°21’29.2” W; distance from 
the introduction site (dis) = 5 km), site 2 (47°01’33.9” 
N, 0°20’40.8” W; dis = 3.4 km) and site 3 (47°01’39.5” 
N, 0°20’39.8” W, dis = 3.4 km). Three sites were close 
to the estimated range periphery: site 4 (47°11’02.6” 
N, 0°07’51.2” W; dis = 21.2 km), site 5 (47°20’38.5” N, 
0°45’49.0” W; dis = 49.4 km) and site 6 (47°06’13.1” 

N, 0°31’50.4” W, dis = 19.2 km). All sites were located 
within a relatively small spatial area (~690 km2) from 
each other to decrease microclimate dissimilarity.

Adult collection, cAre And breeding

Four breeding pairs of X. laevis were collected at each 
site. To initiate breeding, individuals were injected with 
the human chorionic gonadotrophin hormone (HCG). 
The Amphibian Metamorphosis Assay (AMA) and the 
Xenopus Metamorphosis Assay (XEMA) recommend 
using HCG to induce breeding in X. laevis. Males and 
females were kept separate and were primed with 50 
international units (IU) of HCG shortly after collection. 
Males were considered sexually mature when the 
nuptial pads on the forelimbs appeared black and 
females were considered sexually mature when the 
cloaca was red and swollen. Sexually mature females 
were injected for a second time with 500 IU and males 
with 250 IU on the third day (dosages as prescribed by 
Wlizla et al., 2018). The male and female of a breeding 
pair were kept separately and only joined on the third 
day in a plastic aquarium (7–10 L). A plastic mesh was 
inserted underneath the frogs so the laid eggs could 
fall through the mesh and not be eaten or damaged 
by the parents. Frogs were removed from the aquaria 
the following morning. Eggs were left to hatch in their 
aquaria maintained at 22 °C and well aerated until they 
developed into free-swimming tadpoles (stage 45). Adults 
were euthanized at the conclusion of the experiment.

StAging

The larval development of X. laevis is well studied 
and widely used as a model in developmental biology 
(Nieuwkoop and Faber, 1994; Segerdell et al., 2008, 
2013). The development of X. laevis from fertilization 
to metamorphosis undergoes 66 Nieuwkoop and Faber 
(NF) stages (Nieuwkoop and Faber, 1994) grouped into 
nine stage categories according to an anatomical ontology 
(Segerdell et al., 2008). The embryonic development (NF 
stage 1–44, cleavage to tailbud stage category) is rapid 
and takes place within the first 3 days. Post-embryonic 
development within the pre- and prometamorphosis 
stage categories (NF stage 45–57) includes limb bud 
development and toe differentiation. Overall body 
size increases during the pre- and prometamorphosis 
stage categories and decreases during the climax stage 
category (NF stage 58–66) during which tail resorption 
occurs. Thus, for mesocosms the dataset was divided 
according to stage categories (Segerdell et al., 2008). 
Due to the linear increase in body size, the pre- and 
prometamorphosis stage categories (NF stage 45–57) 
will collectively be referred to as ‘larvae’. These were 
analysed separately from the climax stage category (NF 
stage 58–65) where body size decreases. Metamorphs 
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(NF stage 66) were analysed separately as the tail has 
been completely resorbed and data were compared with 
those from the laboratory microcosms. For microcosms 
only metamorphs (NF stage 66) were analysed.

experimentS

We conducted parallel common garden studies in outdoor 
mesocosms and microcosms in the laboratory only. No 
wild larvae or metamorphs were collected. Four egg 
clutches from all six sites (N = 24) were split and allocated 
to both the mesocosm and microcosm experiment.

Outdoor mesocosm experiment
We used 400 L plastic tanks as mesocosms (1.22 m 
diameter, 0.56 m deep). The experimental site was located 
in a rural open habitat within 10 m from a pond where 

X. laevis breed and reach high density (47°04’22.8” N, 
0°11’20.4” W). Twenty-four mesocosms were set-up in 
a Latin square design, one clutch was assigned to one 
mesocosm. In addition, eight temperature data loggers 
(HOBO K8 ® Temperature/Alarm (Waterproof) Data 
Logger—UA-001-08, Onset Computer, Bourne, MA, 
USA) were placed in mesocosms to measure variation 
in temperature (Supporting Information, Fig. S1). Tanks 
were filled with 200 L of locally available tap water and 
left to age for at least 1 month prior to the experiment. 
Each mesocosm was partially shaded with a plastic sheet 
and covered with metal mesh above the tank to avoid 
predation, to standardize light intensity in each tank 
and to avoid overheating. Tadpoles were fed Frog Brittle 
® for tadpoles (NASCO, Fort Atkinson, WI) throughout 
the rearing period. The standard NASCO instructions for 
food (2 g per 37.85 L) once per week was followed and 
surplus food was avoided to uphold water quality. In each 
mesocosm, we introduced individuals from a single clutch 

Figure 1. Current distribution of the invasive population of X. laevis in western France. The point of introduction (star symbol), 
the experimental site (plus symbol) and the six collection sites in the core (green circles) and periphery (orange triangle) used in 
this study are all indiacted. Small grey dots indicate the occurrence data of X. laevis (Vimercati et al., 2020).
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with an initial density of 200 free swimming larvae (NF 
stage 45) (1 tadpole L-1). Every week after introduction, 
five tadpoles were captured at random with a dipnet, 
euthanized by an overdose of tricaine methanesulfonate 
(MS-222) and preserved in 70% ethanol. We measured 
full length, SVL, body depth, tail depth, head width and 
femur length (Fig. 2), staged individuals according to 
Nieuwkoop and Faber (1994) and placed animals into 
stage categories according to Segerdell et al. (2008).

Microcosm laboratory experiment
We conducted a laboratory experiment to measure 
the growth of tadpoles under constant conditions. The 
temperature was kept at 22 °C, and the photoperiod was 
12 h (OECD, 2007). Initially, 20 tadpoles were collected 
from each clutch and placed individually into containers 
with 0.8 L of aged tap water. Containers were randomly 
arranged on shelves, by assignment from randomly 
generated numbers. The feeding regime was kept the same 
as in the outdoor mesocosms. Because of the low sample 
size, tadpoles were not removed during the experiment but 
kept until metamorph (NF stage 66) when size and survival 
were measured. Each metamorph was photographed to 
measure SVL, head width, and femur length (Fig. 2).

StAtiSticAl AnAlySiS

Morphological variation
To assess the effect of location (core vs. periphery) 
on the morphology of each stage (NF stages 45–66), 

we used SVL and relative femur length (femur 
length/SVL) as response variables for larvae, 
climax individuals and metamorphs from the 
mesocosms. We also analysed the first component 
of a PCA carried out on the following traits (SVL, 
head width, body depth, larva tail length, larva tail 
depth). The details of the procedure and results 
are provided in Supporting Information (Table S2; 
Figs S2-S4). In individuals from the microcosms, 
we considered only SVL and femur length of the 
metamorphs. Femur length was examined by using 
SVL as a covariate in the linear mixed models to 
account for correlation.

Linear mixed models [lme4 package in R (Bates 
et al., 2015)] were used with the above-mentioned 
response variables, along with location (core/
periphery) and NF stage as fixed effects. Clutch 
nested within collection site was considered as a 
random effect. All variables were tested for normality 
with the bestNormalize package that selects the best 
transformation procedure among a set of alternatives 
(Peterson and Cavanaugh 2020). Consequently, 
the best transformation was the Ordered Quantile 
(ORQ) transformation. The ORQ transformation 
function is a rank-based procedure whereby the 
values are mapped to their percentile, which is then 
mapped to the percentile of the normal distribution. 
This transformation results in a uniform distribution 
provided there are no ties present in the data. Finally, 
SVL, metamorph SVL and metamorph relative femur 
length was plotted using ggplot2 (Wickham, 2009).

Figure 2. Morphometric measurements taken of X. laevis tadpoles (left) and metamorphs (right) at different stages during 
the mesocosm and microcosm experiments: (1) snout-to-vent length (SVL); (2) maximum head/body depth; (3) maximum tail 
depth; (4) tail length; (5) head width; (6) femur length (illustrated by N.K.).
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Survival in mesocosms and microcosms
We removed 50 individuals from the mesocosms 
owing to our weekly sampling for the morphological 
study whereas no individuals were removed from the 
microcosms. Thus, the number of surviving individuals 
at the end of the experiment was tallied out of 150 for 
mesocosms and out 20 for microcosms. We modelled the 
probability of surviving until the end of the experiment 
in mesocosms and microcosms using generalized 
binomial mixed models with fate (1 = survived, 0 = died) 
as a response variable, location (core/periphery) as a 
fixed effect and clutch nested within collection site as 
a random effect. To analyse the dynamics of mortality 
events during development more thoroughly, we 
individually recorded the date of death (if applicable) 
in microcosms. This was not possible in mesocosms. We 
carried out a Cox proportional hazards analysis using 
the coxme (Therneau, 2019a) and survival (Therneau, 
2019b) packages in R with location (core/periphery) as 
a fixed effect and clutch nested within collection site as 
a random effect.

Time of metamorphosis
To determine whether phenology of development 
differed between the core and periphery of the invasive 
range, we conducted a Cox proportional hazards 
analysis on transition between stage categories using 
the coxme and survival packages in R. The week 
when transition occurred from larva-to-climax was 
considered as the response variable. Location (core/
periphery) was treated as a fixed effect and clutch 
nested within collection site as a random effect.

For all analyses, we selected the best fitting model 
using the corrected Akaike information criterion (AICc) 
according to parsimony (Burnham and Anderson, 2002). 
To account for model selection uncertainty between the 
top models (∆AICc < 2), multi-model inference (model 
averaging) techniques were carried out using the MuMIn 
(Barton, 2020) package in R (Burnham and Anderson, 
2002). Model coefficients were subsequently averaged 
across the set of top models and the resulting averaged 
coefficients were used for predictions. If the top model 
was equivalent (∆AICc < 2) to the null model, the null 
model was not rejected. Model diagnostics were carried 
out using the DHARMa package (Hartig, 2019). All 
analyses were carried out using the statistical software 
R v.3.4.1 (R Core Team, 2018).

RESULTS

VAriAtion in morphologicAl trAitS

Overall, we observed high levels of variation in SVL 
within each specific stage (Fig. 3). No significant 

differences in SVL between core and periphery tadpoles 
reared in the mesocosms were found. Stage was retained 
as the most important predictor among all competing 
models. This was true for both tadpoles and climax 
individuals (Fig. 3; Table 1; Supporting Information, 
Table S1). Conversely, metamorphs reared in the 
microcosms displayed a significant difference in SVL 
between core and periphery. Individuals were larger at 
the periphery with a mean SVL of 12.76 mm (± 1.08 mm 
SD; N = 34) vs. a mean SVL of 11.94 mm (± 1.08 mm 
SD; N = 38) at the core. The model with only location as 
a fixed effect was chosen as the most suitable (Table 1, 
GLMM, ∆AIC = 3.12). In contrast, no differences in SVL 
(Fig. 4A) were detected and the null model was chosen 
as the best model for metamorphs reared in mesocosms 
(Table 1, GLMM, ∆AIC = 1.3). Similar results were 
observed for body size (PC1) (Supporting Information, 
Appendix S1, Table S3). No differences were detected in 
femur length between core and periphery individuals 
reared in mesocosms (∆AIC = 7.5) and microcosms 
(Table 1, GLMM, ∆AIC = 8.2) as the model with only SVL 
was chosen as the best fit model (Table 1).

VAriAtion in SurViVAl And deVelopment

We observed no difference in the proportion of 
surviving tadpoles in the mesocosms between 
individuals from the core (88/150 tadpoles ± 26.41 
SD) and the periphery (100/150 tadpoles ± 22.80 
SD) (Fig. 5). Moreover, no other model gave a better 
fit than the null model (Table 1, binomial GLMM, 
∆AIC = 0.3). A similar outcome was observed for the 
microcosms with no difference in the proportion of 
surviving tadpoles between the individuals from 
the core (5/20 tadpoles ± 1.41 SD) and individuals 
from the periphery (6.5/20 tadpoles ± 3.26 SD). Once 
again, the null model was the best model (Table 1, 
binomial GLMM, ∆AIC = 0.03). Similarly, we observed 
no difference in mortality events between core and 
periphery individuals in microcosms, with the null 
model again emerging as the best model (Table 1, cox 
GLMM, ∆AIC = 0.16).

No difference in the time of metamorphosis was 
observed between individuals from the core and the 
periphery (Cox proportional hazard, Fig. 6, Table 1). 
The difference in the AICc of the null-only model and 
the corresponding model that included only location 
was < 2 for the transitions from larvae to climax 
(∆AIC = 0.003).

DISCUSSION

Spatial sorting theory predicts enhanced dispersal 
of individuals at the periphery of an expanding 
population. Furthermore, it suggests that trade-offs 
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Figure 3. Snout-to-vent length variation during larval development in core (green boxplot) and periphery (orange boxplot) 
sites of the invasive range colonized by X. laevis in western France, as measured from individuals reared in the outdoor 
mesocosms experiment. In the boxplot, the lowest boundary indicates the 25th percentile, a black line within the box indicates 
the median, and the highest boundary indicates the 75th percentile. Whiskers above and below the box indicate the 10th and 
90th percentiles. Points above and below and the whiskers indicate outliers above and below the 10th and 90th percentiles.

Table 1. Model selection summary of top models (ΔAICc < 2) for each response variable: snout-to-vent length (SVL), 
relative femur length, overall survival and week of transition between larvae and climax stage category of individuals 
reared in the mesocosms and microcosms. Predictors in the models were NF stages within stage category (stage) and 
core or periphery (location). Models are ranked by AICc weight (Wi), where higher weighted models have more support. K 
indicates the number of model parameters and logLik the log-likelihood of the model

Response Parameters logLik K AICc ΔAICc Wi

Larval SVL (mesocosm) Stage 520.3 16 1072.5 .0 0.6
Location × stage 507.1 29 1072.6 1.0 0.4

Climax SVL (mesocosm) Location × stage 325.9 19 695.3 .0 0.5
Stage 336.1 11 696.0 0.7 0.3

Metamorph SVL (mesocosm) Null 125.6 4 260.1 .0 0.2
Location 125.1 5 261.4 1.3 0.1

Metamorph SVL (microcosm) Location 108.2 5 227.2 .0 0.8
Femur length (mesocosm) SVL 68.7 5 -126.2 .0 1.0
Femur length (microcosm) SVL 98.8 5 -186.7 .0 1.0
Survival (mesocosm) Null -275.2 3 556.4 .0 0.5

Location -274.1 4 556.4 0.3 0.5
Survival (microcosm) Null -275.2 3 556.2 .0 0.5

Location 274.2 4 556.3 0.1 0.5
Larvae to climax (mesocosm) Location -822.3 13 1659.0 .0 0.5

Null -822.0 1 1658.9 0.1 0.5
Weekly survival (microcosm) Null -1458.5 18 2954.8 .0 0.5

Location -1458.4 18 2955.0 0.2 0.4
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with other functions are progressively shifted to allocate 
more resources to morphological, behavioural and 
physiological traits favouring dispersal (Travis and 
Dytham, 2002; Simmons and Thomas, 2004; Shine 
et al., 2011). In the invasive population of X. laevis in 
western France, spatial sorting has enhanced some 
phenotypic traits that promote dispersal capacity 
in adults (Louppe et al., 2017; Louppe et al., 2018; 
Courant et al., 2019a; Padilla et al., 2019). In turn, this 
may affect the phenotypic traits of the non-dispersing 
stages. In accordance with our predictions, we found 
that the metamorphs in our laboratory microcosms 
had larger SVL at the range periphery than at the core. 
The differences between the core and the periphery 
identified in our microcosm study might display a 
trade-off effect from resource reallocation in adults at 
the periphery. Adults have been found to allocate more 
resources to dispersal and less resources to reproduction 
(Courant et al., 2017). Another explanation might be 
that modifications in tadpole life-history result in 
higher dispersal abilities in adults. For example, in 
addition to advantages relevant to dispersal, a larger 
size at metamorphosis may hold other advantages for 
adults such as higher fecundity in females, an increase 
in fitness and an earlier onset of sexual maturity 

(Smith, 1987; Tejedo, 1992; Altwegg and Reyer, 2003; 
Cabrera-Guzmán et al., 2013). Therefore, body size 
(snout-to-vent length) is a potential target for spatial 
sorting in adults at the periphery and can be of 
interest in future studies. However, this finding was 
not corroborated by the outdoor mesocosm experiment, 
which may be due to increased natural variation in 
field experiments (Morin, 1998).

Although the finding from our laboratory microcosm 
experiment is consistent with our first prediction, we 
found no other evidence for morphological differences 
for tadpoles in our outdoor mesocosm and laboratory 
microcosm experiments. Tadpoles and metamorphs 
in outdoor mesocosms displayed a large variation, as 
previously seen in outdoor mesocosm experiments 
(Morin, 1998), in SVL and relative femur length within 
each stage and no effect of location could be detected. The 
same pattern was observed when using a multivariate 
approach of body size, instead of a single response 
variable approach which strengthens our findings. The 
discrepancy between the laboratory microcosms and 
outdoor mesocosms can be due to experimental effects 
(Brown et al., 2006). Mesocosm experiments are more 
likely to reflect the realistic variation and measurements. 
The differences detected by the laboratory experiment 

Figure 5. Survival of individuals from the core and the 
periphery in the microcosms and the mesocosms. In the 
boxplot, the lowest boundary indicates the 25th percentile, 
a black line within the box indicates the median, and the 
highest boundary indicates the 75th percentile. Whiskers 
above and below the box indicate the 10th and 90th percentiles. 
Points above and below and the whiskers indicate outliers 
above and below the 10th and 90th percentiles.

Figure 4. Frequency of snout-to-vent length (SVL) from 
the core (green shaded) and periphery (orange shaded) 
metamorphs. Mean SVL of metamorphs from the core 
(dashed black vertical line) and periphery (solid black 
vertical line) reared in: (a) outdoor mesocosms and (b) 
laboratory microcosms. Asterisks indicate significant 
differences (P < 0.05).
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Figure 6. Cumulative number of X. laevis individuals 
that transitioned from larvae to climax per week in all 
mesocosms for core (green line) and periphery (orange line) 
sites.

might not be reflecting the real scenario in the field 
(Morin, 1998; Skelly and Kiesecker, 2001, Mikó et al., 
2015). Thus, different experimental designs can deliver 
different results (Skelly, 2002). Mikó et al. (2015) found 
that agile frog (Rana dalmatina) metamorphs are larger 
in laboratory microcosms than in outdoor mesocosms. 
We found an opposite effect in our experiment with 
X. laevis metamorphs being smaller in the laboratory 
microcosms, with tadpoles from the periphery being 
larger than from the core.

Density and intraspecific interactions of tadpole 
aggregations are known to affect the size of tadpoles 
(Dash and Hota, 1980; Kehr et al., 2014). Unmeasured 
variables in the mesocosm experiment such as density 
and temperature throughout the trial period may have 
varied, whereas, in the laboratory the effect of density and 
temperature were controlled. Therefore, the results may 
reflect tadpole size when variables such as temperature 
and density are controlled for. Typically, tadpoles reduce 
growth rates at high densities; however, Gouchie et al. 
(2008) found that X. laevis tadpoles at relatively higher 
densities did not have a significant reduction in growth 
rates. Contrastingly, when confronted with a simulation 
of conspecifics (their reflection in a mirror), X. laevis 
tadpoles displayed decreased growth rates possibly due 
to increased activity (Gouchie et al., 2008). Nonetheless, 
X. laevis tadpoles have shown to aggregate in natural 
waterbodies (Wassersug and Hessler, 1971; Wassersug 
et al., 1981), which in addition to other benefits can form 
thermal sinks and can elevate body temperature more 
than when individuals are isolated (e.g. Guilford, 1988). 
Furthermore, Katz et al. (1981) suggested that the 
growth potential of Xenopus tadpoles can increase when 
they aggregate in the water column. The aggregative 
behaviour of tadpoles can, therefore, enhance tadpole 

fitness in the mesocosms (Hokit and Blaustein, 1997). 
Furthermore, adults from the periphery have not 
previously been found to display larger SVL (Louppe 
et al., 2017) or a faster growth rate (Courant et al., 2019b). 
Conversely, males from the periphery were smaller 
(Louppe et al., 2017; Courant et al., 2019a). Thus, the 
larger size of peripheral individuals at metamorphosis 
reared in the laboratory experiment may be spurious or 
only last for a limited period. It has been observed that 
at the periphery of expanding populations density can 
be lower than at the core (Phillips et al., 2010; Shine 
et al., 2011). This has not been demonstrated for X. laevis 
populations and should be prioritized for future study. 
The initial density was the same for all clutches in our 
mesocosms. However, should X. laevis density indeed 
be lower at the periphery, periphery tadpoles should 
experience less developmental constraints due to lower 
conspecific density and grow larger than core tadpoles.

Our results do not support the second prediction 
that spatial sorting would affect tadpole survival and 
time to metamorphosis. In both experiments, we found 
no differences in tadpole survival probability between 
the core and the periphery of the invasive range, in 
spite of the fact that adults have a higher survival 
probability at the periphery (Courant et al., 2017). 
Likewise, we found no differences in development (time 
to metamorphosis) between core and periphery in the 
mesocosm experiment. Tadpole survival depends on 
many abiotic [e.g. hydroperiod (Amburgey et al., 2012)] 
and biotic [e.g. predators and competition (Relyea and 
Hoverman, 2003)] factors. Thus, it is possible that the 
absence of a phenotypic shift in X. laevis tadpoles is 
due to developmental and environmental constraints 
(Fink, 1982; Moran, 1994). At metamorphosis, climax 
individuals make use of their hind limbs to swim 
and catch food (Combes et al., 2004; Handrigan and 
Wassersug, 2007), whereas adults additionally use 
hind limbs for overland movements (Handrigan 
and Wassersug, 2007; Padilla et al., 2019). Thus, the 
strength of the selective force on hind limb length may 
be reduced in juveniles.

This discrepancy in spatial phenotypic variation between 
adults and tadpoles in response to range expansion can 
be due to the decoupling of traits (Moran, 1994; Sherratt 
et al., 2017). Decoupling describes the process by which 
variation occurs in a trait at a particular stage of the 
life cycle without affecting the expression of this trait 
at another stage. In X. laevis only a small fraction of the 
genes that account for morphology are expressed (1.6%) in 
both tadpoles and adults (Wollenberg Valero et al., 2017). 
Although a few studies have focussed on differences in 
physiology between core and periphery populations of 
adult X. laevis (Louppe et al., 2018; Padilla et al., 2020), no 
studies have investigated potential differences in tadpole 
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physiology. Studies centred on physiological difference 
may be worthwhile to better determine the impacts of 
spatial sorting. However, the similarity observed between 
core and periphery populations may simply reflect the 
fact that, from a functional perspective, tadpoles are 
constrained to keep their morphological features and 
developmental rate constant. This can indicate that in 
X. laevis each life stage can experience a unique set of 
constraints, also seen in salamanders (Bonett and Blair, 
2017). Our results may also indicate that the genetic 
regulation causing the hind limb to grow longer does not 
occur until after metamorphosis. In that case, the trade-
offs between dispersal and reproduction or metabolism 
are only expressed at the dispersing stage of ontogeny. 
However, the degree of decoupling across stages is trait-
dependent and some traits can be less plastic than others 
due to canalization (Levis and Pfennig, 2019). Canalization 
describes the development of a fixed phenotype in 
response to environmental variation if plasticity becomes 
too costly (Debat and David, 2001; Levis and Pfennig, 
2019). Decoupled evolution through spatial sorting can 
lead to modifications of adult X. laevis phenotypes that 
would promote dispersal without affecting the phenotype 
of the tadpole stage. This study provides evidence for 
the decoupling of dispersal traits in X. laevis adults 
from tadpole morphology (SVL), developmental rate 
and survival. However, the larger SVL of metamorphs 
at the periphery suggests that metamorph morphology 
is influenced by spatial sorting and possibly coupled to 
adult fitness.

Spatial sorting is predicted to occur in expanding 
populations. Because species with complex life cycles 
experience stage-specific selection pressures, the 
decoupling of traits between stages can be enhanced 
during the colonization process, especially when novel 
environmental conditions are encountered, as expected 
for invasive populations. Our study highlights that 
invasive X. laevis tadpole traits can be conserved 
and are not necessarily influenced by the change of 
dispersal traits in adults, possibly due to decoupling. 
Due to the fact that the introduction of X. laevis in 
France is fairly recent (~40 years ago), it is unknown 
whether the strength/intensity of decoupling changes 
over time in an expanding population, and then 
enhances or moderates the effects of spatial sorting 
on dispersal. However, future studies on additional 
taxa are necessary to be able to generalize these 
findings. Currently, many species experience changes 
in distribution ranges as a result of translocation 
or climate change (Chuang and Peterson, 2016). 
Investigating spatial sorting and the coupling or 
decoupling of traits across life stages in expanding 
populations of species with complex life cycles, either 
native or invasive, may help us to better understand 
how constraints at the non-dispersing stage may 
contribute to the success or failure of expansion.
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Appendix S1. Testing the effects of position and stage on tadpole and metamorph morphology as described for 
principal component analysis.
Figure S1. Averaged daily temperature profile in outdoor mesocosms (solid black line) with standard error from 
the average (standard error bars) for a period of 10 weeks in 2018. 
Figure S2. Body size (PC1) variation during the larval development of larvae (NF stages 45-57) from the 
core (green) and the periphery (orange) of the invasive range of X. laevis in western France as measured from 
individuals raised in outdoor mesocosms.
Figure S3. Body size (PC1) variation during the larval development of climax individuals (NF stages 58-65) from 
the core and the periphery of the invasive range of X. laevis in western France as measured from individuals 
raised in outdoor mesocosms.
Figure S4. Body size (PC1) variation of metamorphs (NF stage 66) from the core and the periphery of the invasive 
range of X. laevis in western France as measured from individuals raised in an outdoor mesocosm.
Table S1. Full model-averaged parameter coefficients, estimates and standard error for GLMM (tadpole and 
climax individuals’ snout-to-vent length). 
Table S2. Results of principal component (PC) analyses of the morphology of X. laevis larvae, climax individuals 
and metamorphs.
Table S3. Model selection summary for body size (PC1) of larvae, body size (PC1) of climax individuals, and body 
size (PC1) of metamorphs reared in the mesocosms.
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